Exam II
 Section I
 Part A - No Calculators

1. C p. 25
$\begin{array}{lllll}f(x)=4 x^{3}-3 x-1 & \Rightarrow & f(2)=32-6-1=25 & \Rightarrow & \text { Point }(2,25) \\ f^{\prime}(\mathrm{x})=12 \mathrm{x}^{2}-3 & \Rightarrow & f^{\prime}(2)=48-3=45 & \Rightarrow & \text { Slope }=45 \\ \mathrm{y}-25=45(\mathrm{x}-2) & \Rightarrow & \mathrm{y}=45 \mathrm{x}-65 & & \end{array}$
2. A p. 25
$\left.\int_{0}^{1} \sin (\pi x) \mathrm{dx}=-\frac{1}{\pi} \cos (\pi \mathrm{x})\right]_{0}^{1}=-\frac{1}{\pi}(\cos \pi-\cos 0)=-\frac{1}{\pi}(-1-1)=\frac{2}{\pi}$
3. B p. 26

This is the definition of the derivative of the cosine function at coordinate x. Hence
$\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=\cos ^{\prime}(x)=-\sin x$
4. C p. 26

The graph is concave up when $y^{\prime \prime}>0$.
$y=x^{5}-5 x^{4}+10 x+15$
$y^{\prime}=5 x^{4}-20 x^{3}+10$
$y^{\prime \prime}=20 x^{3}-60 x^{2}=20 x^{2}(x-3)$
The factor ($20 x^{2}$) is always positive. The sign of $y^{\prime \prime}$ depends upon the sign of the factor $(x-3) . y^{\prime \prime}>0$ if and only if $x>3$.
5. D p. 26

$$
\begin{aligned}
\int_{0}^{\pi} \sin x d x & =-\cos x]_{0}^{\pi} \\
& =-\cos \pi+\cos 0=2 .
\end{aligned}
$$

Thus the whole region has area 2 .

We need to divide this into two parts, with the left-hand section having an area that is $\frac{1}{4}$ of the whole region. Hence we must find k so that $\int_{0}^{\mathrm{k}} \sin \mathrm{xdx}=\frac{1}{4}(2)=\frac{1}{2}$.
This gives: $-\cos x]_{0}^{k}=\frac{1}{2} \Rightarrow-\cos k+1=\frac{1}{2} \Rightarrow \cos k=\frac{1}{2} \Rightarrow k=\frac{\pi}{3}$
6. C p. 27

$$
\begin{aligned}
x(t) & =(t-2)^{3}(t-6) \\
x^{\prime}(t) & =3(t-2)^{2}(t-6)+(t-2)^{3} \\
& =(t-2)^{2}[3(t-6)+(t-2)] \\
& =(t-2)^{2}(4 t-20) \\
& =4(t-2)^{2}(t-5)
\end{aligned}
$$

This is positive-valued when $t>5$.
7. E p. 27

The antiderivative of sec must be memorized.
$\frac{d y}{d x}=\sec x \Rightarrow y=\ln |\sec x+\tan x|+C$
8. A p. 27

Note that the numerator is the derivative of the denominator. Hence

$$
\begin{aligned}
\left.\int_{\pi / 4}^{\pi / 3} \frac{\sec ^{2} x}{\tan x} d x=\ln |\tan x|\right]_{\pi / 4}^{\pi / 3} & =\ln \left|\tan \frac{\pi}{3}\right|-\ln \left|\tan \frac{\pi}{4}\right| \\
& =\ln \sqrt{3}-\ln 1=\ln \sqrt{3} .
\end{aligned}
$$

This integration problem can also be done with a formal substitution.
Let $u=\tan x$. Then $d u=\sec ^{2} x d x$.
In addition, since this is a definite integral, we can change the limits of integration.
When $x=\frac{\pi}{4}$, then $u=\tan \frac{\pi}{4}=1$.
When $x=\frac{\pi}{3}$, then $u=\tan \frac{\pi}{3}=\sqrt{3}$.
Hence $\left.\int_{\pi / 4}^{\pi / 3} \frac{\sec ^{2} x}{\tan x} d x=\int_{1}^{\sqrt{3}} \frac{d u}{u}=\ln |u|\right]_{1}^{\sqrt{3}}=\ln \sqrt{3}-\ln 1=\ln \sqrt{3}$.
9. B p. 28
$\lim _{x \rightarrow \infty} \frac{x^{2}-6}{2+x-3 x^{2}}=\lim _{x \rightarrow \infty} \frac{1-\frac{6}{x^{2}}}{\frac{2}{x^{2}}+\frac{1}{x}-3}=-\frac{1}{3}$.

D p. 28
$\int_{0}^{2} \sqrt{x^{2}-4 x+4} d x=\int_{0}^{2} \sqrt{(x-2)^{2}} d x=\int_{0}^{2}|x-2| d x$
To evaluate this integral, count squares in the graph at the right, or note that the area of the triangle is $\frac{1}{2}(2)(2)=2$.

C p. 28
$g(x)=\frac{x-2}{x+2}$
$\mathrm{g}^{\prime}(\mathrm{x})=\frac{(\mathrm{x}+2) \cdot 1-(\mathrm{x}-2) \cdot 1}{(\mathrm{x}+2)^{2}}=\frac{4}{(\mathrm{x}+2)^{2}}$
Hence $g^{\prime}(2)=\frac{4}{4^{2}}=\frac{1}{4}$.

B \quad p. 29
$\frac{d y}{d x}=2 x y$
$\frac{1}{y} d y=2 x d x$
$\ln |y|=x^{2}+C$
$|y|=e^{x^{2}+C}=e^{x^{2}} e^{C} \Rightarrow y=D e^{x^{2}}$
Then $x=0, y=4 \Rightarrow 4=D e^{0} \Rightarrow D=4 \Rightarrow y=4 e^{x^{2}}$

A p. 29
$f(x)=(2 x-3)^{4}$
$f^{\prime}(x)=4(2 x-3)^{3} \cdot 2$
$f^{\prime \prime}(x)=4 \cdot 3(2 x-3)^{2} \cdot 2^{2}$
$f^{\prime \prime \prime}(x)=4 \cdot 3 \cdot 2(2 x-3) \cdot 2^{3}$
$f^{(4)}(x)=4!\cdot 2^{4}$
14. D p. 29

$$
\begin{aligned}
\int_{2}^{4}(f(x)+3) d x & =\int_{2}^{4} f(x) d x+\int_{2}^{4} 3 d x \\
& =6+3 \cdot 2=12
\end{aligned}
$$

15. E p. 30

$$
\begin{aligned}
& \tan (x+y)=x \\
& \sec ^{2}(x+y)\left[1+\frac{d y}{d x}\right]=1 \\
& 1+\frac{d y}{d x}=\cos ^{2}(x+y) \\
& \frac{d y}{d x}=\cos ^{2}(x+y)-1
\end{aligned}
$$

16. C p. 30

Solution I. $f(g(x))=f(\ln x)=e^{2 \ln x}=e^{\ln x^{2}}=x^{2}$
Then the derivative of $f(g(x))$ is $2 x$.
The value of the derivative at $x=e$ is $2 e$.
Solution II. $\quad D_{x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
At $x=e, g(x)=1$.
Hence we want $f^{\prime}(1) \cdot g^{\prime}(e)$.
$f^{\prime}(x)=2 e^{2 x}$ and $g^{\prime}(x)=\frac{1}{x}$, so $f^{\prime}(1)=2 e^{2}$ and $g^{\prime}(e)=\frac{1}{e}$.
Thus $D_{x}[f(g(x))]$, at $x=e$, has the value $2 e^{2} \cdot \frac{1}{e}=2 e$.
17. C p. 30

$$
\begin{aligned}
\int_{0}^{1} x e^{x^{2}} d x & =\frac{1}{2} \int_{0}^{1}(2 x) e^{x^{2}} d x \\
& \left.=\frac{1}{2} e^{x^{2}}\right]_{0}^{1} \\
& =\frac{1}{2}(e-1)
\end{aligned}
$$

18. E p. 31
$h^{\prime}(x)=\frac{3}{4}\left(x^{2}-4\right)^{-1 / 4} .(2 x)=\frac{6}{4\left(x^{2}-4\right)^{1 / 4}}$
Then calculating $h^{\prime}(2)$ involves a 0 in the denominator and a nonzero numerator, hence, $\mathrm{h}^{\prime}(2)$ does not exist.
19. B p. 31

$$
y=\sqrt{x}-\frac{1}{x \sqrt[3]{x}}=x^{1 / 2}-x^{-4 / 3} \Rightarrow \frac{d y}{d x}=\frac{1}{2} \cdot x^{-1 / 2}+\frac{4}{3} x^{-7 / 3}
$$

20. D p. 31

In order for f to be continuous, we must have $\lim _{x \rightarrow 1} f(x)=f(1)$.

$$
\begin{aligned}
\lim _{x \rightarrow 1} f(x) & =\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-\sqrt{3 x+1}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-\sqrt{3 x+1}}{x-1} \cdot \frac{\sqrt{x+3}+\sqrt{3 x+1}}{\sqrt{x+3}+\sqrt{3 x+1}} \\
& =\lim _{x \rightarrow 1} \frac{(x+3)-(3 x+1)}{(x-1)(\sqrt{x+3}+\sqrt{3 x+1})}=\lim _{x \rightarrow 1} \frac{-2 x+2}{(x-1)(\sqrt{x+3}+\sqrt{3 x+1})} \\
& =\lim _{x \rightarrow 1} \frac{-2(x-1)}{(x-1)(\sqrt{x+3}+\sqrt{3 x+1})}=\lim _{x \rightarrow 1} \frac{-2}{\sqrt{x+3}+\sqrt{3 x+1}}=-\frac{1}{2}
\end{aligned}
$$

Thus k must equal $-\frac{1}{2}$.
21. D p. 32
$f(x)=\frac{x}{2 x-3}$
$f^{\prime}(x)=\frac{(2 x-3)-x \cdot 2}{(2 x-3)^{2}}$
$f^{\prime}(1)=\frac{-1-2}{(-1)^{2}}=-3$
The normal is a line that is perpendicular to the tangent at a point. Since the tangent line at $x=1$ has a slope of -3 , then the siope of the normal there must be $\frac{1}{3}$. Since $f(1)=-1$, the point at which the normal is to be drawn is $(1,-1)$.

Thus the equation of the line is:

$$
\begin{aligned}
y+1 & =\frac{1}{3}(x-1) \\
3 y+3 & =x-1 \\
4 & =x-3 y
\end{aligned}
$$

22. A p. 32

With $f(x)=x \ln x$, we have $f^{\prime}(x)=x \cdot \frac{1}{x}+\ln x=1+\ln x$.
The critical number occurs when $f^{\prime}(x)=0$.
$1+\ln x=0 \quad \Rightarrow \quad \ln x=-1$
$\Rightarrow \quad \mathrm{x}=\mathrm{e}^{-1}$
Evaluating the function f at $x=e^{-1}$, we have:
$f\left(e^{-1}\right)=e^{-1} \ln \left(e^{-1}\right)=e^{-1} \cdot(-1)=-\frac{1}{e}$.
To be sure that this is the minimum value, we check the concavity of the curve at $x=e^{-1}$. $f^{\prime \prime}(x)=\frac{1}{x}$, so $f^{\prime \prime}(x)$ has a positive value at the positive number $x=e^{-1}$.
Hence the curve is concave up at the critical number $x=e^{-1}$, so there is a minimum value achieved there.
23. C p. 33

The slope field shows segments all with the same slope for a given y. That is, the slopes do no vary as x changes. Hence any suggested solution that has x in the formula for $\frac{d y}{d x}$ is incorrect. That allows the elimination of three of the proposed answers. If the correct answer were $\frac{d y}{d x}=y^{2}$, then the slopes of the segments would be at least 0 everywhere. They are not. Hence the correct answer is $\frac{d y}{d x}=-y$.
24. B p. 33
$\left.\frac{1}{\pi / 4} \int_{0}^{\pi / 4} \sec ^{2} x d x=\frac{4}{\pi} \tan x\right]_{0}^{\pi / 4}=\frac{4}{\pi} \cdot 1=\frac{4}{\pi}$
25. B p. 33
$g^{\prime}(x)>1$ assures us that g is strictly increasing. Then g will be one-to-one, and therefore will have an inverse.
26. E p. 34

Since f is continuous, positive at $x=4$ and negative at $x=5$, by the Intermediate Value Theorem, there is a point in the interval $[4,5]$ where the function value is 0 .
27. A p. 34

With $G(x)=\int_{0}^{2 x} \cos \left(t^{2}\right) d t$, we first let $F(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$.
Then by the Second Fundamental Theorem, $\mathrm{F}^{\prime}(\mathrm{x})=\cos \left(\mathrm{x}^{2}\right)$.
In addition, $\mathrm{G}(\mathrm{x})=\mathrm{F}(2 \mathrm{x})$.
We use the Chain Rule to differentiate this.
$G^{\prime}(x)=F^{\prime}(2 x) \cdot 2$.
Since $F^{\prime}(x)=\cos \left(x^{2}\right)$, we have $F^{\prime}(2 x)=\cos \left((2 x)^{2}\right)=\cos \left(4 x^{2}\right)$.
Thus $G^{\prime}(x)=2 \cos \left(4 x^{2}\right)$ and $G^{\prime}(\sqrt{\pi})=2 \cos (4 \pi)=2$.
28. E p. 34

Velocity is the rate of change of the position with respect to time.
Hence we need to determine $\frac{\mathrm{dx}}{\mathrm{dt}}$.
Differentiate the given expression implicitly with respect to t.
$t \cdot \frac{d x}{d t}+x=2 x \frac{d x}{d t}$
$\Rightarrow \quad x=(2 x-t) \frac{d x}{d t}$
$\Rightarrow \quad \frac{d x}{d t}=\frac{x}{2 x-t}$

When the particle is at $x=2$, the time is determined by the equation $t x=x^{2}+8$; in particular, $2 t=12$, so $t=6$.
Then the velocity is evaluated by substituting $x=2$ and $t=6$ into the expression for $\frac{d x}{d t}$. $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{2}{4-6}=-1$.

Exam II
 Section I
 Part B - Calculators Permitted

1. E P. 35

A function has a derivative at a particular x-coordinate if its graph is smooth there.
I. $y=\left|x^{3}-3 x^{2}\right|$
II. $y=\sqrt{x^{2}+.01}-|x-1|$
III. $y=\frac{e^{x}}{\cos x}$

All three of these graphs are smooth at $\mathrm{x}=0$.
2. D p. 35

Volume $\left.=\int_{0}^{5} 20 e^{.02 t} d t=\frac{20}{.02} \mathrm{e}^{.02 t}\right]_{0}^{5}=1000\left(\mathrm{e}^{.1}-\mathrm{e}^{0}\right) \approx 105 \mathrm{gal}$
3. D p. 36

By the Quotient Rule, $f^{\prime}(x)=\frac{\left(a+x^{3}\right) \cdot 6-(6 x) \cdot\left(3 x^{2}\right)}{\left(a+x^{3}\right)^{2}}=\frac{6 a-12 x^{3}}{\left(a+x^{3}\right)^{2}}$.
Then $f^{\prime}(0)=\frac{6 a}{a^{2}}=\frac{6}{a}$.
We are given that $f^{\prime}(0)=3$. Hence $\frac{6}{a}=3$, so $a=2$.
4. C p. 36
$f(x)=\frac{(x-1)^{2}}{2 x^{2}-5 x+3}=\frac{(x-1)^{2}}{(2 x-3)(x-1)}=\frac{x-1}{2 x-3} \quad$ if $x \neq 1$.
I. $\mathrm{f}(1)$ does not exist; hence f is not continuous at $\mathrm{x}=1$.

False
II. $\lim _{x \rightarrow 1} f(x)=0$; thus there is not a vertical asymptote at $x=1$.

There is a vertical asymptote at $x=\frac{3}{2}$.
False
III. $\lim _{x \rightarrow \infty} f(x)=\frac{1}{2}$

True
5. C p. 36

Solution I. By the Chain Rule, $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$.
Since $\frac{d y}{d u}=1+2 e^{u}$ and $\frac{d u}{d x}=\frac{1}{x}$, then $\frac{d y}{d x}=\left(1+2 e^{u}\right) \cdot \frac{1}{x}$.
When $x=\frac{1}{e}$, we have $u=1+\ln \frac{1}{x}=1-1=0$.
With those values: $\frac{d y}{d x}=\left(1+2 e^{0}\right) \cdot e=3 e$
Solution II. Substitution gives $\mathrm{y}=(1+\ln \mathrm{x})+2 \mathrm{e}^{1+\ln \mathrm{x}}=1+\ln \mathrm{x}+2 \mathrm{ex}$ Then $\frac{d y}{d x}=\frac{1}{x}+2 e$, so when $x=\frac{1}{e}, \frac{d y}{d x}=3 e$.
6. B p. 37

Since the radius is always 3 times the height, , we have $h=\frac{1}{3} r$, so
$V=\frac{1}{3} \pi r^{2}\left(\frac{1}{3} r\right)=\frac{1}{9} \pi r^{3}$. Then $\frac{d V}{d t}=\frac{1}{3} \pi r^{2} \frac{d r}{d t}$.
On the graph, we see that when $t=6$, then $V=4 \pi$. In addition, we can approximate the slope of the curve, $\frac{\mathrm{dV}}{\mathrm{dt}}$, at the point where $\mathrm{t}=6$.
$\frac{d V}{d t} \approx \frac{1.6 \pi}{2}=0.8 \pi$.
Knowing that the volume is 4π when $t=6$ allows us to compute the radius of the
conical pile at that moment. $4 \pi=\frac{1}{9} \pi r^{3} \Rightarrow \quad r=36^{1 / 3}$.
Substituting these values into the equation $\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{1}{3} \pi \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}}$, we have:
$0.8 \pi=\frac{1}{3} \pi 36^{2 / 3} \frac{\mathrm{dr}}{\mathrm{dt}}$, which gives $\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{2.4 \pi}{36^{2 / 3} \pi} \approx 0.22$
7. E p. 37
I. $f(1)=1, f^{\prime}(3) \approx-2$ True
II. $\int_{1}^{2} f(x) d x \approx 6.5, f^{\prime}(3.5)=0$

True
III. $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=f^{\prime}(2) \approx 1$
$\frac{f(2.5)-f(2)}{2.5-2} \approx \frac{2.5-2.3}{2.5-2}=\frac{2}{5}=.4 \quad$ True
8. A p. 37

Solution I. Starting with $5 x^{3}+40=\int_{a}^{x} f(t) d t$, differentiate to obtain $15 x^{2}=f(x)$.
Then $\left.\int_{a}^{x} 15 t^{2} d t=5 t^{3}\right]_{a}^{x}=5 x^{3}-5 a^{3}$
Since we are given that $5 x^{3}+40=\int_{a}^{x} f(t) d t$,
we can set $5 x^{3}+40=5 x^{3}-5 a^{3}$.
Then $-5 a^{3}=40$, so $a=-2$.
Solution II. Let $x=a$, then $5 a^{3}+40=\int_{a}^{a} f(t) d t=0$.
Then $5 a^{3}+40=0$, and $a=-2$.
9. A p. 38

Use the washer method.

$$
\begin{aligned}
V & =\pi \int_{0}^{\ln 3}\left[\left(e^{x / 2}+1\right)^{2}-2^{2}\right] d x \\
& \approx 5.128
\end{aligned}
$$

10. A p. 38

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x \sin \left(x^{2}\right)}{y} \\
& y d y=x \sin \left(x^{2}\right) d x \\
& \int y d y=\int x \sin \left(x^{2}\right) d x \\
& \frac{y^{2}}{2}=-\frac{1}{2} \cos \left(x^{2}\right)+C \\
& y^{2}=-\cos \left(x^{2}\right)+D \\
& x=0, y=1 \Rightarrow \quad 1=-\cos (0)+D \quad \Rightarrow \quad D=2 \\
& y=\sqrt{2}-\cos \left(x^{2}\right)
\end{aligned}
$$

11. D p. 38

$$
\begin{aligned}
& y=\sin u \quad u=v-\frac{1}{v} \quad v=\ln x \\
& \frac{d y}{d u}=\cos u \quad \frac{d u}{d v}=1+\frac{1}{v^{2}} \quad \frac{d v}{d x}=\frac{1}{x} \\
& \mathrm{x}=\mathrm{e} \quad \Rightarrow \quad \mathrm{v}=1 \quad \Rightarrow \quad \mathrm{u}=0 \\
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d v} \cdot \frac{d v}{d x} \\
& =(\cos u)\left(1+\frac{1}{v^{2}}\right)\left(\frac{1}{\mathrm{x}}\right) \\
& =1 \cdot 2 \cdot \frac{1}{e}=\frac{2}{e}
\end{aligned}
$$

12. A p. 39

The area is the definite integral of the difference of the functions over the interval [$a, b]$. Use the graphing calculator to determine that $\mathrm{a}=0.382$ and $\mathrm{b}=2.618$.

Then letting $y_{1}=2-|x-3|$ and $y_{2}=x^{2}-2 x$ we have

$$
\int_{a}^{b}\left(y_{1}-y_{2}\right) d x \approx 1.863
$$

13. D p. 39
I. The function f has a horizontal tangent at each x-coordinate where $f^{\prime}(x)=0$. This is the case at $x=-3,1$, and 3 , but not at $x=2$.
II. Since $f^{\prime}(x)<0$ for $x<1$ and $f^{\prime}(x)>0$ for $x>1$, the function f is decreasing to the left of $x=1$ and increasing to the right.
III. Since $f^{\prime}(x)$ is increasing to the left of $x=-3$ and decreasing to the right of $x=-3$, the concavity if the graph of f will change at $x=-3$.

True
14. D p. 40

$$
\begin{aligned}
& f(x)=\left(x^{2}-5\right)^{3} \\
& \begin{aligned}
f^{\prime}(x) & =3\left(x^{2}-5\right)^{2}(2 x) \\
f^{\prime \prime}(x) & =6\left(x^{2}-5\right)\left(4 x^{2}\right)+3\left(x^{2}-5\right)^{2} \cdot 2 \\
& =3\left(x^{2}-5\right)\left[8 x^{2}+2\left(x^{2}-5\right)\right] \\
& =3\left(x^{2}-5\right)\left(10 x^{2}-10\right) \\
& =30(x+\sqrt{5})(x-\sqrt{5})(x+1)(x-1)
\end{aligned}
\end{aligned}
$$

The second derivative has sign changes at four different x-coordinates.
15. C p. 40

$$
\begin{aligned}
& N(t)=200 \ln \left(t^{2}+36\right) \\
& N^{\prime}(t)=200 \cdot \frac{1}{t^{2}+36} \cdot 2 t
\end{aligned}
$$

The graph of $N^{\prime}(t)$ has a maximum at $t=6$ days.
Alternatively, $N^{\prime \prime}(t)=\frac{\left(t^{2}+36\right)(400)-400 t(2 t)}{\left(t^{2}+36\right)^{2}}=\frac{14400-400 t^{2}}{\left(t^{2}+36\right)^{2}}$.
$N^{\prime \prime}(t)=0$ when $t^{2}=36$ and $t=6$ days.
16. C p. 41
$a(t)=4 e^{2 t} \Rightarrow \quad v(t)=2 e^{2 t}+C$
When $\mathrm{t}=0$, then $\mathrm{v}=-2$.
In the last equation, this gives $-2=2 e^{0}+C$, so that $C=-4$.
Then $v(t)=2 \mathrm{e}^{2 \mathrm{t}}-4$.
Antidifferentiating again, we have $x(t)=e^{2 t}-4 t+D$.
When $t=0$, then $x=2$.
This gives $2=e^{0}-4 \cdot 0+D$, so that $D=1$.
Then $x(t)=e^{2 t}-4 t+1$, and we obtain the particular value $x\left(\frac{1}{2}\right)=e-1$.
17. D p. 41
I. On the interval $(-2,-1), f^{\prime}(x)>0$. Hence f is increasing. True
II. At $x=0, f^{\prime}(x)$ changes from decreasing to increasing. True
III. On the interval $(-1,0), f^{\prime}(x)$ is decreasing, so f is concave down. False

Exam II
 Section II
 Part A - Calculators Permitted

1. p. 43

The curves intersect at $\mathrm{A}=1.102$.
(a) $\int_{0}^{\mathrm{A}}\left[\left(4-x^{2}\right)-(1+2 \sin x)\right] d x \approx 1.764$
(b) $\pi \int_{0}^{\mathrm{A}}\left[\left(4-x^{2}\right)^{2}-(1+2 \sin x)^{2}\right] \mathrm{dx} \approx 30.460$
(c) $\int_{0}^{\mathrm{A}}\left[\left(4-x^{2}\right)-(1+2 \sin x)\right]^{2} d x \approx 3.671$
2. p. 44
(a) Let the side of the square be denoted by x. Since the perimeter $P=4 x$, we have $\frac{d \mathrm{~d}}{\mathrm{dt}}=4 \frac{\mathrm{dx}}{\mathrm{dt}}$.
Hence $\quad \frac{d p}{d t}=8 \Rightarrow \frac{d x}{d t}=2$.

$$
\frac{\mathrm{dp}}{\mathrm{dt}}=8 \Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}}=2
$$

In addition, in the isosceles right triangle in
the figure to the right,
$r=\frac{x}{2} \sqrt{2}=\frac{x}{\sqrt{2}}$.
$r=\frac{\mathrm{x}}{\sqrt{2}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=\frac{1}{\sqrt{2}} \frac{\mathrm{dx}}{\mathrm{dt}}=\sqrt{2}=1.414$
$\mathrm{C}=2 \pi \mathrm{r} \Rightarrow \frac{\mathrm{dC}}{\mathrm{dt}}=2 \pi \frac{\mathrm{dr}}{\mathrm{dt}}=2 \pi \sqrt{2}=8.886 \mathrm{in} / \mathrm{sec}$
(b) $\mathrm{A}=\pi \mathrm{r}^{2}-(\mathrm{r} \sqrt{2})^{2}$

When the square has side 4 ,

$$
=(\pi-2) \mathrm{r}^{2} \quad \text { the circle has radius } 2 \sqrt{2}
$$

$$
\begin{aligned}
\frac{\mathrm{dA}}{\mathrm{dt}} & =(\pi-2) 2 \mathrm{r} \frac{\mathrm{dr}}{\mathrm{dt}} \\
& =(\pi-2)(2 \cdot 2 \sqrt{2}) \sqrt{2}=8(\pi-2)=9.133 \mathrm{in}^{2} / \mathrm{sec}
\end{aligned}
$$

1:Correct limits in an integral in (a), (b) and (c)
$2:\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrand }+ \text { constant } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
3. p. 45
(a) $F(x)=\int_{1}^{\sqrt{x}} \frac{2 t-1}{t+2} d t \Rightarrow F(1)=\int_{1}^{1} \frac{2 t-1}{t+2} d t=0$.
(b) $\quad F^{\prime}(x)=\frac{2 \sqrt{x}-1}{\sqrt{x}+2} \cdot \frac{1}{2 \sqrt{x}} \Rightarrow F^{\prime}(1)=\frac{2-1}{1+2} \cdot \frac{1}{2}=\frac{1}{6}$.
(c) slope $=F^{\prime}(1)$ and $F(1)=0$

$$
y-0=\frac{1}{6}(x-1)
$$

(d) F increases when $F^{\prime}(x)>0$.

$$
\begin{array}{rlrl}
F^{\prime}(x)=\frac{2 \sqrt{x}-1}{\sqrt{x}+2} \cdot \frac{1}{2 \sqrt{x}}=0 \text { when } 2 \sqrt{x}-1 & =0 \\
\sqrt{x} & =\frac{1}{2} \\
F \text {. increases when } x>\frac{1}{4} . & x & =\frac{1}{4}
\end{array}
$$

1:answer

2: $\left\{\begin{array}{l}1: F^{\prime}(x) \\ 1: F^{\prime}(1)\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { point } \\ 1: \text { tangent equation }\end{array}\right.$
$3:\left\{\begin{array}{l}1: F^{\prime}(x)>0 \\ 1: \text { answer } \\ 1: \text { justification }\end{array}\right.$

Exam II

Section II

Part B - No Calculators

4. p. 46

Logistic differential equation $\frac{d P}{d t}=2 P(3-P)=6 P\left(1-\frac{P}{3}\right)$. with carrying capacity $L=3$ and growth constant $k=6$.
(a) Starting at $(0,0.1): \quad$ Starting at $(0,4.0)$: The solution that starts at $(0,0.1)$ has an inflection point.
$3:\left\{\begin{array}{l}1: 1 \text { st solution curve } \\ 1: 2 \text { nd solutioncurve } \\ 1: \text { inflection point }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { tangent equation }\end{array}\right.$
The equation of the tangent line is: $y-1=4(x-0)$ or $y=4 x+1$.
(c)

$$
P(t)=\frac{3}{1+2 e^{-6 t}} \text { and } P^{\prime}(t)=-3\left(1+2 e^{-6 t}\right)^{-2}\left(-12 e^{-6 t}\right)=\frac{3 \dot{6} e^{-6 t}}{\left(1+2 e^{-6 t}\right)^{2}}
$$

Substituting in the equation $P^{\prime}(t)=2 P(3-P)$ we have

$$
\begin{aligned}
& \left.\frac{36 e^{-6 t}}{\left(1+2 e^{-6 t}\right)^{2}} \right\rvert\, 2 \cdot\left(\frac{3}{1+2 e^{-6 t}}\right)\left(3-\frac{3}{1+2 e^{-6 t}}\right) \\
& \mid \\
&=\frac{36\left(\frac{9}{1+2 e^{-6 t}}-\frac{9}{\left(1+2 e^{-6 t}\right)^{2}}\right)}{\left(1+2 e^{-6 t}\right)^{2}}
\end{aligned}
$$

(d) Solution 1: $\frac{d P}{d t}=2 P(3-P)=6 P-2 P^{2}$

$$
\begin{gathered}
\frac{d^{2} P}{d t^{2}}=(6-4 P) \frac{d P}{d t}=(6-4 P)(2 P)(3-P) \\
\frac{d^{2} P}{d t^{2}}=0, \text { when } P=\frac{3}{2}, 0,3
\end{gathered}
$$

2: answer
Since the graph of $\frac{d P}{d t}$ vs P is a concave down parabola with zeros at 0 and 3 , the maximum is at $P=\frac{3}{2}$.
Solution 2:
Maximum growth rate occurs at $\frac{1}{2}$ carrying capacity $\frac{1}{2}(3)=\frac{3}{2}$.
5. p. 47
(a) F is increasing on $(-3,1)$ and $(3,4)$ since $\mathrm{F}^{\prime}(\mathrm{x})>0$ on the intervals.
(b) The absolute minimum occurs at $\mathrm{x}=-3$. F increases a great deal from then until $x=1$. Then it decreases a little (until $x=3$), and then increases again until $x=4$.
The absolute maximum occurs either at $x=1$ or $x=4$. It depends upon the relative sizes of the regions between the x-axis and the curve on the intervals $(1,3)$ and $(3,4)$.
(c) F is concave down if F^{\prime} is decreasing. This occurs on the interval $(-2,2)$.

3: $\left\{\begin{array}{l}\text { 2:answer } \\ 1: \text { justification }\end{array}\right.$

3: $\left\{\begin{array}{l}1: \text { answer } \\ 2: \text { reasoning }\end{array}\right.$

2: answer
6. p. 48
(a) $f(x)=a x+\frac{b}{x}$, where a and b are positive.

$$
f^{\prime}(x)=a-\frac{\hat{b}}{x^{2}}
$$

$$
\begin{aligned}
f^{\prime}(x)>0 & \quad \Rightarrow \quad x^{2}-b>0 \\
& \Rightarrow \quad x^{2}>\frac{b}{a} \\
& \Rightarrow x<-\sqrt{\frac{b}{a}} \quad \text { or } \quad x>\sqrt{\frac{b}{a}}
\end{aligned}
$$

(b) There is a relative maximum at $x=-\sqrt{\frac{b}{a}} ; y=a\left[-\sqrt{\frac{b}{a}}\right]+\frac{b}{-\sqrt{\frac{b}{a}}}$

$$
=-2 \sqrt{\mathrm{ab}} .
$$

There is a relative minimum at $x=\sqrt{\frac{b}{a}} ; y=a\left[\sqrt{\frac{b}{a}}\right]+\frac{b}{\sqrt{\frac{b}{a}}}$

$$
=2 \sqrt{a b}
$$

(c) $f^{\prime \prime}(x)=\frac{2 b}{x^{3}}>0$ when $x>0$.
(d) $f^{\prime \prime}(x)$ never changes sign at a point on the curve. Although the curve is concave down for $x<0$ and the curve is concave up for $x>0$, there is not a point of inflection at $x=0$ since there is no point on the curve there.

2: $\left\{\begin{array}{l}1: f^{\prime \prime}(x)>0 \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { justification }\end{array}\right.$

